Hola, primero es interesante saber sobre lo que se trata este blog, sobre fisica, asi que les recomiendo este video
Ahora si, puedes explorar distintos temas en este lugar, recuerda ver las publicaciones mas antiguas, alli encontraras muchos temas mas
1. MOMENTUM LINEAL O CANTIDAD DE MOVIMIENTO
Es la relación que se establece entre masa del cuerpo y velocidad y el momentum se define matemática mente como:
P=M.V
El momentun es una cantidad vectorial y tiene la misma dirección de la velocidad.
ademas, la cantidad de movimiento, momento lineal, ímpetu o moméntum es una magnitud vectorial, unidad SI: (kg m/s) que, en mecánica clásica, se define como el producto de la masa del cuerpo y su velocidad en un instante determinado. En cuanto al nombre Galileo Galilei en su Discursos sobre dos nuevas ciencias usa el término italiano impeto, mientras que Isaac Newton usa en Principia Mathematica el término latino motus (movimiento) y vis (fuerza). Moméntum es una palabra directamente tomada del latín mōmentum, derivado del verbo mŏvĕre 'mover'
En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante definición como el producto de la masa (Kg) de un cuerpo material por su velocidad (m/s), para luego analizar su relación con la ley de Newton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, después del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.
El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa, necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones.
La cantidad de movimiento obedece a una ley de conservación, lo cual significa que la cantidad de movimiento total de todo sistema cerrado (o sea uno que no es afectado por fuerzas exteriores, y cuyas fuerzas internas no son disipadoras) no puede ser cambiada y permanece constante en el tiempo.
En el enfoque geométrico de la mecánica relativista la definición es algo diferente. Además, el concepto de momento lineal puede definirse para entidades físicas como los fotones o los campos electromagnéticos, que carecen de masa en reposo. No se debe confundir el concepto de momento lineal con otro concepto básico de la mecánica newtoniana, denominado momento angular, que es una magnitud diferente.
Finalmente, se define el impulso recibido por una partícula o un cuerpo como la variación de la cantidad de movimiento durante un período dado:
\Delta \vec{p} = \vec{p}_f - \vec{p}_0
P=M.V
El momentun es una cantidad vectorial y tiene la misma dirección de la velocidad.
ademas, la cantidad de movimiento, momento lineal, ímpetu o moméntum es una magnitud vectorial, unidad SI: (kg m/s) que, en mecánica clásica, se define como el producto de la masa del cuerpo y su velocidad en un instante determinado. En cuanto al nombre Galileo Galilei en su Discursos sobre dos nuevas ciencias usa el término italiano impeto, mientras que Isaac Newton usa en Principia Mathematica el término latino motus (movimiento) y vis (fuerza). Moméntum es una palabra directamente tomada del latín mōmentum, derivado del verbo mŏvĕre 'mover'
En Mecánica Clásica la forma más usual de introducir la cantidad de movimiento es mediante definición como el producto de la masa (Kg) de un cuerpo material por su velocidad (m/s), para luego analizar su relación con la ley de Newton a través del teorema del impulso y la variación de la cantidad de movimiento. No obstante, después del desarrollo de la Física Moderna, esta manera de hacerlo no resultó la más conveniente para abordar esta magnitud fundamental.
El defecto principal es que esta forma esconde el concepto inherente a la magnitud, que resulta ser una propiedad de cualquier ente físico con o sin masa, necesaria para describir las interacciones. Los modelos actuales consideran que no sólo los cuerpos masivos poseen cantidad de movimiento, también resulta ser un atributo de los campos y los fotones.
La cantidad de movimiento obedece a una ley de conservación, lo cual significa que la cantidad de movimiento total de todo sistema cerrado (o sea uno que no es afectado por fuerzas exteriores, y cuyas fuerzas internas no son disipadoras) no puede ser cambiada y permanece constante en el tiempo.
En el enfoque geométrico de la mecánica relativista la definición es algo diferente. Además, el concepto de momento lineal puede definirse para entidades físicas como los fotones o los campos electromagnéticos, que carecen de masa en reposo. No se debe confundir el concepto de momento lineal con otro concepto básico de la mecánica newtoniana, denominado momento angular, que es una magnitud diferente.
Finalmente, se define el impulso recibido por una partícula o un cuerpo como la variación de la cantidad de movimiento durante un período dado:
\Delta \vec{p} = \vec{p}_f - \vec{p}_0
2. EL IMPULSO CAUSA VARIACION DEL MUMENTUM
Una fuerza hace cambiar el momentum , pero si se aplica durante un largo tiempo se hace mayor el momentum, es decir si se aumenta el tiempo de contacto aumenta el momentum lineal
IMPULSO ---- IM=F.T
Cuando se aplica una fuerza externa hace cambiar la cantidad de movimiento, la ley de conservación del momentum dice “en ausencia de fuerzas externas el momentum de un sistema no se altera” si el sistema sufre transformaciones el las que todas las fuerzas son internas como por ejemplo en la desintegración radioactiva de un núcleo atomico en la colicion de dos autos en la explosión de una estrella , el momentun total de un sistema es el mismo antes y después de la transformación final.
Etiquetas:
el impulso causa variacion del momentum
3. LEY DE CONSERVACION DEL MOVIMIENTO
Si con un cuerpo de masa m1 y velocidad v1 se aplica una fuerza a otro cuerpo de masa m2 y velocidad v2, como por ejemplo, en un saque de tenis, en ese instante es aplicable el principio de acción y reacción y tenemos que:
m1.v1 = m2.v2
es decir la masa de la raqueta por su velocidad, en el momento del choque, debe ser igual a la masa de la pelota de tenis por la velocidad que adquiere.
Enunciando la Ley de conservación de la cantidad de movimiento dice:
En cualquier sistema o grupo de cuerpos que interactúen, la cantidad de movimiento total, antes de las acciones, es igual a la cantidad de movimiento total luego de las acciones.
Σm.v = 0
mi.vi = mf.vf
ΔP = Δp1 + Δp2
cuando se aplica una fuerza entera hace cambiar la cantidad de mavimiento; la ley de conservacion del movimiento dice:en ausencia de fuerzas externas el momentum de un cistema no se altera "si el cistema sufre transformaciones en las que todas las fuerzas son internas como por ejemplo, en la desintegracion radioactiva de un nucleo atomico, en la colicion de dos autos o en la explosion de una estrella el momento total de un cistema es el mismo antes y despues de la transformacion final
momentun = momentun
inicial final
m1.v1 = m2.v2
es decir la masa de la raqueta por su velocidad, en el momento del choque, debe ser igual a la masa de la pelota de tenis por la velocidad que adquiere.
Enunciando la Ley de conservación de la cantidad de movimiento dice:
En cualquier sistema o grupo de cuerpos que interactúen, la cantidad de movimiento total, antes de las acciones, es igual a la cantidad de movimiento total luego de las acciones.
Σm.v = 0
mi.vi = mf.vf
ΔP = Δp1 + Δp2
cuando se aplica una fuerza entera hace cambiar la cantidad de mavimiento; la ley de conservacion del movimiento dice:en ausencia de fuerzas externas el momentum de un cistema no se altera "si el cistema sufre transformaciones en las que todas las fuerzas son internas como por ejemplo, en la desintegracion radioactiva de un nucleo atomico, en la colicion de dos autos o en la explosion de una estrella el momento total de un cistema es el mismo antes y despues de la transformacion final
momentun = momentun
inicial final
Etiquetas:
ley e conservacion del movimiento
3.1 Coliciones
En una colisión intervienen dos objetos que se ejercen fuerzas mutuamente. Cuando los objetos se encuentran cerca, interaccionan fuertemente durante un intervalo breve de tiempo. La fuerzas de éste tipo reciben el nombre de fuerzas impulsivas y se caracteriza por su acción muy intensa y su brevedad. Por esta razón al estudiar las colisiones se considera un periodo instantáneo de tiempo, en el que podemos despreciar el resto de fuerzas exteriores que actúan sobre el sistema de partículas, como podrían ser la gravedad, o cualquier otro tipo de fuerza.
El choque es un caso particular de colisión.
Se produce choque entre dos cuerpos cuando uno de ellos encuentra en su trayectoria a otro y produciéndose contacto físico.
Al producirse el choque también se producen deformaciones en ambos cuerpos, éstas pueden desaparecer de inmediato o perdurar. Si las deformaciones desaparecen rápidamente significa que se ha producido un choque elástico, por el contrario, si permanecen se ha producido un choque inelástico o plástico.
En ambos casos ocurre una variación de la energía cinética que se transformará en calor que disiparán los cuerpos.
El choque es un caso particular de colisión.
Se produce choque entre dos cuerpos cuando uno de ellos encuentra en su trayectoria a otro y produciéndose contacto físico.
Al producirse el choque también se producen deformaciones en ambos cuerpos, éstas pueden desaparecer de inmediato o perdurar. Si las deformaciones desaparecen rápidamente significa que se ha producido un choque elástico, por el contrario, si permanecen se ha producido un choque inelástico o plástico.
En ambos casos ocurre una variación de la energía cinética que se transformará en calor que disiparán los cuerpos.
Etiquetas:
ley e conservacion del movimiento
3.2 Coliciones elasticas
Se denomina choque elástico a una colisión entre dos o más cuerpos en la que éstos no sufren deformaciones permanentes durante el impacto. En una colisión elástica se conservan tanto el momento lineal como la energía cinética del sistema, y no hay intercambio de masa entre los cuerpos, que se separan después del choque.
Las colisiones en las que la energía no se conserva producen deformaciones permanentes de los cuerpos y se denominan inelásticas.
En mecánica se hace referencia a un choque perfectamente elástico cuando en él se conserva la energía cinética del sistema formado por las dos masas que chocan entre sí.
Para el caso particular que ambas masas sean iguales, se desplacen según la misma recta y que la masa chocada se encuentre inicialmente en reposo, la energía se transferirá por completo desde la primera a la segunda, que pasa del estado de reposo al estado que tenía la masa que la chocó.
En otros casos se dan situaciones intermedias en lo referido a las velocidades de ambas masas, aunque siempre se conserva la energía cinética del sistema. Esto es consecuencia de que el término "elástico" hace referencia a que no se consume energía en deformaciones plásticas, calor u otras formas
Las colisiones en las que la energía no se conserva producen deformaciones permanentes de los cuerpos y se denominan inelásticas.
En mecánica se hace referencia a un choque perfectamente elástico cuando en él se conserva la energía cinética del sistema formado por las dos masas que chocan entre sí.
Para el caso particular que ambas masas sean iguales, se desplacen según la misma recta y que la masa chocada se encuentre inicialmente en reposo, la energía se transferirá por completo desde la primera a la segunda, que pasa del estado de reposo al estado que tenía la masa que la chocó.
En otros casos se dan situaciones intermedias en lo referido a las velocidades de ambas masas, aunque siempre se conserva la energía cinética del sistema. Esto es consecuencia de que el término "elástico" hace referencia a que no se consume energía en deformaciones plásticas, calor u otras formas
Etiquetas:
ley e conservacion del movimiento
3.3 Coliciones inelasticas
Un choque inelastico es un tipo de choque en el que la energía cinética no se conserva. Como consecuencia, los cuerpos que colisionan pueden sufrir deformaciones y aumento de su temperatura. En el caso ideal de un choque perfectamente inelástico entre objetos macroscópicos, éstos permanecen unidos entre sí tras la colisión. El marco de referencia del centro de masas permite presentar una definición más precisa.
De un choque se dice que es "perfectamente inelástico" (o "totalmente inelástico") cuando disipa toda la energía cinética disponible, es decir, cuando el coeficiente de restitución ε vale cero. En tal caso, los cuerpos permanecen unidos tras el choque, moviéndose solidariamente (con la misma velocidad).
La principal característica de este tipo de choque es que existe una disipación de energía, ya que tanto el trabajo realizado durante la deformación de los cuerpos como el aumento de su energía interna se obtiene a costa de la energía cinética de los mismos antes del choque. En cualquier caso, aunque no se conserve la energía cinética, sí que se conserva el momento lineal total del sistema.
La energía cinética disponible corresponde a la que poseen los cuerpos respecto al sistema de referencia de su centro de masas. Antes de la colisión, la mayor parte de esta energía corresponde al objeto de menor masa. Tras la colisión, los objetos permanecen en reposo respecto al centro de masas del sistema de partículas. La disminución de energía se corresponde con un aumento en otra(s) forma(s) de energía, de tal forma que el primer principio de la termodinámica se cumple en todo caso.
De un choque se dice que es "perfectamente inelástico" (o "totalmente inelástico") cuando disipa toda la energía cinética disponible, es decir, cuando el coeficiente de restitución ε vale cero. En tal caso, los cuerpos permanecen unidos tras el choque, moviéndose solidariamente (con la misma velocidad).
La principal característica de este tipo de choque es que existe una disipación de energía, ya que tanto el trabajo realizado durante la deformación de los cuerpos como el aumento de su energía interna se obtiene a costa de la energía cinética de los mismos antes del choque. En cualquier caso, aunque no se conserve la energía cinética, sí que se conserva el momento lineal total del sistema.
La energía cinética disponible corresponde a la que poseen los cuerpos respecto al sistema de referencia de su centro de masas. Antes de la colisión, la mayor parte de esta energía corresponde al objeto de menor masa. Tras la colisión, los objetos permanecen en reposo respecto al centro de masas del sistema de partículas. La disminución de energía se corresponde con un aumento en otra(s) forma(s) de energía, de tal forma que el primer principio de la termodinámica se cumple en todo caso.
Etiquetas:
ley e conservacion del movimiento
4. FLOTABILIDAD
Todo cuerpo al ser sumergido en agua pierde aparente mente su peso esto se debe aparente mente a que cuando el objeto esta sumergido el agua ejerce una fuerza hacia arriba llamada fuerza de flotabilidad.
Ademas la flotabilidad es la capacidad de un cuerpo para sostenerse dentro del fluido. Se dice que un cuerpo esta en flotación cuando permanece suspendido en un entorno líquido o gaseoso, es decir en un fluido."Un objeto flotará sobre un fluido (ambos bajo el efecto fuerza de una gravedad dominante) siempre que el número de partículas que componen el objeto sea menor al número de partículas del fluido desplazadas".
La flotabilidad de un cuerpo dentro de un fluido estará determinada por las diferentes fuerzas que actuen sobre el mismo y el sentido de las mismas. La flotabilidad es positiva cuando el cuerpo tienda a ascender dentro del fluido, es negativa cuando el cuerpo tiene a descender dentro del fluido, y es neutra cuando se mantiene en suspensión dentro del fluido. La flotabilidad viene establecida por el Principio de Arquímedes, y si el cuerpo fuera de naturaleza compresible su flotabilidad se verá modificada al variar su volumen segun la Ley de Boyle
La flotabilidad de un cuerpo dentro de un fluido estará determinada por las diferentes fuerzas que actuen sobre el mismo y el sentido de las mismas. La flotabilidad es positiva cuando el cuerpo tienda a ascender dentro del fluido, es negativa cuando el cuerpo tiene a descender dentro del fluido, y es neutra cuando se mantiene en suspensión dentro del fluido. La flotabilidad viene establecida por el Principio de Arquímedes, y si el cuerpo fuera de naturaleza compresible su flotabilidad se verá modificada ál variar su volumen segun la Ley de Boyle-Mariotte.
El cálculo y modificación de la capacidad de flotación de un cuerpo tiene importantes aplicaciones en la vida cotidiana como pueden ser:
* Diseño de naves: barcos, submarinos.
* Dieño de aerostatos: globo, zepelines.
* Práctica de deportes subacuáticos: (buceo, pesca submarina, etc).
4.1 Principio de Arquimides
El principio de Arquímedes es un principio físico que afirma que un cuerpo total o parcialmente sumergido en un fluido estático, será empujado con una fuerza vertical ascendente igual al peso del volumen de fluido desplazado por dicho cuerpo. Esta fuerza recibe el nombre de empuje hidrostático o de Arquímedes, y se mide en newtons (en el SI).
El principio de Arquímedes se formula así:
donde ρf es la densidad del fluido, V el volumen del cuerpo sumergido y g la aceleración de la gravedad, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje actúa siempre verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
4.2 Principio de Pascal
El principio de Pascal o ley de Pascal, es una ley enunciada por el físico y matemático francés Blaise Pascal (1623-1662) que se resume en la frase: «el incremento de presión aplicado a una superficie de un fluido incompresible (líquido), contenido en un recipiente indeformable, se transmite con el mismo valor a cada una de las partes del mismo».
El principio de Pascal puede comprobarse utilizando una esfera hueca, perforada en diferentes lugares y provista de un émbolo. Al llenar la esfera con agua y ejercer presión sobre ella mediante el émbolo, se observa que el agua sale por todos los agujeros con la misma presión.
También podemos ver aplicaciones del principio de Pascal en las prensas hidráulicas.
Suscribirse a:
Entradas (Atom)